Skip to content

Download E-books Fundamentals of Discrete Math for Computer Science: A Problem-Solving Primer (Undergraduate Topics in Computer Science) PDF

This textbook presents an enticing and motivational creation to conventional subject matters in discrete arithmetic, in a fashion particularly designed to entice machine technological know-how scholars. The textual content empowers scholars to imagine seriously, to be powerful challenge solvers, to combine concept and perform, and to acknowledge the significance of abstraction. sincerely based and interactive in nature, the ebook provides targeted walkthroughs of a number of algorithms, stimulating a talk with the reader via casual statement and provocative questions. gains: no university-level heritage in arithmetic required; preferably established for classroom-use and self-study, with modular chapters following ACM curriculum concepts; describes mathematical approaches in an algorithmic demeanour; comprises examples and workouts through the textual content, and highlights an important innovations in each one part; selects examples that reveal a pragmatic use for the idea that in query.

Show description

Read or Download Fundamentals of Discrete Math for Computer Science: A Problem-Solving Primer (Undergraduate Topics in Computer Science) PDF

Best Mathematics books

Selected Works of Giuseppe Peano

Chosen Works of Giuseppe Peano (1973). Kennedy, Hubert C. , ed. and transl. With a biographical comic strip and bibliography. London: Allen & Unwin; Toronto: collage of Toronto Press.

Fourier Series and Integrals (Probability and Mathematical Statistics)

The guidelines of Fourier have made their approach into each department of arithmetic and mathematical physics, from the speculation of numbers to quantum mechanics. Fourier sequence and Integrals makes a speciality of the intense energy and adaptability of Fourier's uncomplicated sequence and integrals and at the fabulous number of functions within which it's the leader software.

Solving Mathematical Problems: A Personal Perspective

Authored via a number one identify in arithmetic, this enticing and obviously offered textual content leads the reader in the course of the a variety of strategies keen on fixing mathematical difficulties on the Mathematical Olympiad point. overlaying quantity thought, algebra, research, Euclidean geometry, and analytic geometry, fixing Mathematical difficulties comprises a number of workouts and version suggestions all through.

Introduction to Algorithms, 3rd Edition (MIT Press)

A few books on algorithms are rigorous yet incomplete; others disguise plenty of fabric yet lack rigor. advent to Algorithms uniquely combines rigor and comprehensiveness. The publication covers a large diversity of algorithms extensive, but makes their layout and research obtainable to all degrees of readers.

Extra resources for Fundamentals of Discrete Math for Computer Science: A Problem-Solving Primer (Undergraduate Topics in Computer Science)

Show sample text content

Three. 7. four Euclid’s set of rules for GCD is right . . . . . . . . . . . . . . . . . . . . three. eight The facts Promised in Chap. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . seventy seven seventy seven seventy eight eighty two eighty two eighty two eighty three eighty five 87 88 89 ninety three ninety six ninety seven a hundred 102 113 a hundred and fifteen a hundred and fifteen 117 119 121 124 126 four looking and Sorting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 1 looking out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 1. 1 looking out an Arbitrary record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 1. 2 looking out a looked after record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 2 Branching Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 2. 1 A moment model of Binary seek . . . . . . . . . . . . . . . . . . . . . . . . four. three Sorting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. three. 1 choice varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. three. 2 trade varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. four Binary timber with (at Least) n! Leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. five Partition varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 6 comparability of Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 6. 1 Timings and Operation Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . workouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 131 131 133 139 139 147 147 one hundred fifty 157 one hundred sixty five 178 178 179 Contents xi five Graphs and timber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 1 creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 1. 1 levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 1. 2 Eulerian Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 1. three Hamiltonian Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 2 Paths, Circuits, and Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 2. 1 Subgraphs made up our minds via Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. three timber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. three. 1 Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. four Edge-Weighted Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. four. 1 Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. five Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. five. 1 Dipaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. five. 2 Distance functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. five. three Dijkstra’s set of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. five. four Floyd-Warshall set of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 183 188 188 189 a hundred ninety 192 194 195 209 213 214 215 216 217 224 229 6 kin: in particular on (Integer) Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 6. 1 relatives and Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 1. 1 Matrix illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 1. 2 Directed Graph illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 1. three homes of relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Equivalence relatives . . . . . . . . . .

Rated 4.20 of 5 – based on 6 votes